A Novel Methodology for Classifying Electrical Disturbances Using Deep Neural Networks
نویسندگان
چکیده
Electrical power quality is one of the main elements in generation systems. At same time, it most significant challenges regarding stability and reliability. Due to different switching devices this type architecture, kinds generators as well non-linear loads are used for industrial processes. A result need classify analyze Power Quality Disturbance (PQD) prevent degradation system reliability affected by non-stationary oscillatory nature. This paper presents a novel Multitasking Deep Neural Network (MDL) classification analysis multiple electrical disturbances. The characteristics extracted using specialized adaptive methodology signals, namely, Empirical Mode Decomposition (EMD). methodology’s design, development, various performance tests carried out with 28 difficulties levels, such severity, disturbance duration noise 20 dB 60 signal range. MDL was developed diverse data set difficulty noise, quantity 4500 records samples has an average accuracy percentage 95% In addition, 90% analyzing important aspects studying crest factor, per unit voltage analysis, Short-term Flicker Perceptibility (Pst), Total Harmonic Distortion (THD), among others.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Classifying sport videos with deep neural networks
This project aims to apply deep neural networks to classify video clips in applications used to streamline advertisements on the web. The system focuses on sport clips but can be expanded into other advertisement fields with lower accuracy and longer training times as a consequence. The main task was to find the neural network model best suited for classifying videos. To achieve this the field ...
متن کاملDeep Recurrent Convolutional Neural Networks for Classifying P300 Bci Signals
We develop and test three deep-learning recurrent convolutional architectures for learning to recognize single trial EEG event related potentials for P300 brain-computer interfaces (BCI)s. One advantage of the neural network solution is that it provides a natural way to share a lower-level feature space between subjects while adapting the classifier that works on that feature space. We compare ...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملDeep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging.
Surgical cancer resection requires an accurate and timely diagnosis of the cancer margins in order to achieve successful patient remission. Hyperspectral imaging (HSI) has emerged as a useful, noncontact technique for acquiring spectral and optical properties of tissue. A convolutional neural network (CNN) classifier is developed to classify excised, squamous-cell carcinoma, thyroid cancer, and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Technologies (Basel)
سال: 2023
ISSN: ['2227-7080']
DOI: https://doi.org/10.3390/technologies11040082